Journal of Organometallic Chemistry, 259 (1983) 301-303 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CARBON MONOOXIDE-INDUCED DISPROPORTIONATION OF DICYCLOPENTADIENYLTITANIUM CHLORIDE DIMER TO DICYCLOPENTADIENYLTITANIUM DICARBONYL AND DICYCLOPENTADIENYLTITANIUM DICHLORIDE

LUIGI PIETRO BATTAGLIA, MARIO NARDELLI*, CORRADO PELIZZI, GIOVANNI PREDIERI

Istituto di Chimica Generale ed Inorganica, Università degli Studi, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Via M.D'Azeglio 85, 43100 Parma (Italy)

and GIAN PAOLO CHIUSOLI

Istituto di Chimica Organica, Università degli Studi, Via M.D'Azeglio 85, 43100 Parma (Italy)

(Received July 28th, 1983)

Summary

Dicyclopentadienyltitanium chloride dimer under CO atmosphere undergoes disproportionation leading to dicyclopentadienyltitanium dicarbonyl and dicyclopentadienyltitanium dichloride.

We recently described [1] the reduction of Cp_2TiCl_2 by manganese powder under CO to give $(Cp_2TiCl)_2$ and to a carbonyl derivative showing the same infrared absorptions as $Cp_2Ti(CO)_2$. After CO absorption was complete the solution still was green, however, whereas $Cp_2Ti(CO)_2$ is red. For some reason the reduction process was limited mainly to $(Cp_2TiCl)_2$. The latter was shown not to be reduced further even in the presence of CO [1,2].

We observed, however, that on standing for a long time under CO, pure $(Cp_2TiCl)_2$ in tetrahydrofuran gave a red deposit of $Cp_2Ti(CO)_2$. The CO absorption was determined quantitatively at 20°C and found to be 1/4 of the theoretical value for the formation of $Cp_2Ti(CO)_2$. The remaining product corresponded to a stoichiometric mixture of $(Cp_2TiCl)_2$ and Cp_2TiCl_2 (green solution). Both compounds could be isolated separately when the solvent was completely removed.

The 1/1 stoichiometry of this mixture and its behaviour correspond to the formula of adducts in which a coordination site of one molecule of $(Cp_2TiCl)_2$ or of two molecules of Cp_2TiCl is occupied by Cl. This is in agreement with the fact that upon adding Cp_2TiCl_2 to $(Cp_2TiCl)_2$ in 1/1 ratio or upon adding to $(Cp_2TiCl)_2$ more than 2 moles of tetraethylammonium chloride per mole of Ti, CO absorption was completely blocked. Reduction by CO possibly implies attack on a fifth position

of the Cp₂TiCl dimer. Recent results obtained in the electrochemical reduction of Cp₂TiCl₂ indicate that reduction begins by electron transfer to Cp₂TiCl₂ without Cl dissociation [3]. Insertion of Cp₂TiCl₂ between two Cp₂TiCl units cannot be excluded, however, even though it is not easy to explain why reduction does not occur.

The reduction of $(Cp_2TiCl)_2$ must involve the following steps: (a) attack by CO on $(Cp_2TiCl)_2$ possibly on a fifth coordination site, (b) disproportionation, and (c) adduct formation between Cp_2TiCl_2 and $(Cp_2TiCl)_2$.

Molecular weight determination carried out either on the solution of the product obtained by reduction with CO and filtration of $Cp_2Ti(CO)_2$ or on a mixture of Cp_2TiCl_2 and $(Cp_2TiCl)_2$ gives a value of 690 amu; this value is in agreement with the presence in solution of a product of formula $[Cp_2TiCl_2(Cp_2TiCl)_2]$ (676 amu). In conclusion, the compound $Cp_2Ti(CO)_2$ can be prepared directly by $(Cp_2TiCl)_2$ and CO via disproportionation. The process is blocked by the formation of an adduct between $(Cp_2TiCl)_2$ and Cp_2TiCl_2 .

Experimental

General procedures

All reactions were carried out under an inert atmosphere. Organic solvents were deoxygenated and dried by distillation from suitable drying agents [4]. Cp_2TiCl_2 was obtained commercially (Strem Chemicals). $(Cp_2TiCl)_2$ was prepared as previously described [5].

Infrared spectra were recorded on a Perkin-Elmer 283 B spectrophotometer. Molecular weights measurements were made with a Knauer osmometer by the vapour pressure method, under N_2 atmosphere in tetrahydrofuran solutions, with dibenzoyl and Cp₂TiCl₂ as standards.

Reactions

(a) $(Cp_2TiCl)_2$ (0.2 g) was dissolved in 30 cm³ of an anhydrous tetrahydrofuran and stirred under CO, the volume of the latter being measured in a buret at 20°C; after about three days the colour of the solution changed from green to brown-red and an absorption of CO was observed which corresponded to 1/4 mol of titanium. The solution showed two vibrational bands in the IR spectrum at 1960 and 1875 cm⁻¹. After partial evaporation of the solvent and addition of n-hexane a brown-red, air-sensitive powder $(Cp_2Ti(CO)_2)$ was obtained.

(b) Equimolar amounts of Cp_2TiCl_2 and $(Cp_2TiCl)_2$ were dissolved in tetrahydrofuran and the solution was stirred under CO at 20°C as above; after several days no absorption of CO was observed.

(c) A large excess of Et_4NCI was added under CO to a tetrahydrofuran solution of $(Cp_2TiCl)_2$; after stirring for several days at 20°C no absorption of CO was observed.

Acknowledgements

The authors thank the National Research Council (C.N.R., Rome), Progetto Finalizzato di Chimica Fine e Secondaria for support of this work.

References

- 1 L.P. Battaglia, M. Nardelli, C. Pelizzi, G. Predieri and G.P. Chiusoli, J. Organomet. Chem., 209 (1981) C7.
- 2 C. Floriani and G. Fachinetti, J. Chem. Soc. Dalton, (1973) 1954.
- 3 N. El Murr and A. Chaloyard, J. Organomet. Chem., 212 (1981) C39.
- 4 D.D. Perrin, W.L.F. Armarego and D.A. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1966.
- 5 M.L.H. Green and C.R. Lucas, J. Chem. Soc. Dalton, (1972) 1000.